1 The Heisenberg group does not admit a bi - Lipschitz embedding into L 1 after

نویسنده

  • John Mackay
چکیده

We show that the Heisenberg group, with its Carnot-Caratheodory metric, does not admit a bi-Lipschitz embedding into L1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 9 METRIC DIFFERENTIATION , MONOTONICITY AND MAPS TO L 1

This is one of a series of papers on Lipschitz maps from metric spaces to L. Here we present the details of results which were announced in [CK06, Section 1.8]: a new approach to the infinitesimal structure of Lipschitz maps into L, and, as a first application, an alternative proof of the main theorem of [CK06], that the Heisenberg group does not admit a bi-Lipschitz embedding in L. The proof u...

متن کامل

Metric Differentiation, Monotonicity and Maps to L

We present a new approach to the infinitesimal structure of Lipschitz maps into L, and as an application, we give an alternative proof of the main theorem of [CK06], that the Heisenberg group does not admit a bi-Lipschitz embedding in L. The proof uses the metric differentiation theorem of [Pau01] and the cut metric description in [CK06] to reduce the nonembedding argument to a classification o...

متن کامل

0 N ov 2 00 6 DIFFERENTIATING MAPS INTO L 1 , AND THE GEOMETRY OF BV FUNCTIONS

This is one of a series of papers examining the interplay between differentiation theory for Lipschitz maps, X → V , and bi-Lipschitz nonembeddability, where X is a metric measure space and V is a Banach space. Here, we consider the case V = L, where differentiability fails. We establish another kind of differentiability for certain X , including R and H, the Heisenberg group with its Carnot-Ca...

متن کامل

Differentiating Maps into L, and the Geometry of Bv Functions

This is one of a series of papers examining the interplay between differentiation theory for Lipschitz maps, X → V , and bi-Lipschitz nonembeddability, where X is a metric measure space and V is a Banach space. Here, we consider the case V = L, where differentiability fails. We establish another kind of differentiability for certain X , including R and H, the Heisenberg group with its Carnot-Ca...

متن کامل

A finitely-generated amenable group with very poor compression into Lebesgue spaces

We construct an example of a finitely-generated amenable group that does not admit any coarse 1-Lipschitz embedding with positive compression exponent into Lp for any 1 ≤ p < ∞, answering positively a question of Arzhantseva, Guba and Sapir.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009